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Abstract. A sequence {Xi} of independent and identically distributed random objects is con-
sidered. The common distribution of the Xi’s is absolutely continuous with respect to a given
measure, and the corresponding density is not completely specified but depends on an unknown
parameter. Under mild topological and continuity requirements, a necessary and sufficient crite-
rion for the consistency of a sequence of maximum likelihood estimators is obtained. When this
characterization is applied to the case in which the parameter belongs to a finite dimensional
Euclidean space, the conclusion is that the sequence is consistent if and only if it is bounded with
probability 1.

Key Words: Hewitt-Savage zero-one law, Strong law of large numbers, Consistency criterion,
Boundedness almost everywhere.

AMS Subject Classifications: 62H12, 62H15.

Running Head: Consistency criterion for ML estimators

1. Introduction

This work concerns the maximum likelihood estimation method, which is widely used in statistics
and, under regularity conditions frequently satisfied in useful models, produces asymptotically
efficient estimators (Severini, 2000, Shao, 1999, Lehmann and Casella 1998, Azzalini, 1996). The
starting point is a sequence {Xi} of independent and identically distributed (iid) random objects
whose common distribution is absolutely continuous with respect to a given measure, and the
corresponding density is not completely specified but depends on an unknown parameter θ. In
this context, the most basic and desirable asymptotic property of an estimation scheme for θ is
its consistency which, roughly, requires the convergence of the generated estimators to the true
parameter value as the sample size increases; see Definition 2.1 below. In this direction, it was
shown by Bahadur (1958) that the maximum likelihood procedure is not necessarily consistent
(see also Lehmann and Casella, 1998, p. 445-447), and this fact provides the motivation for the
main problem considered in this note: To determine a necessary and sufficient criterion for the
consistency of the maximum likelihood estimation method.

The above problem is being analyzed, essentially, under three types of assumptions presented
formally in the following sections: First, it is supposed that the parameter space Θ is a locally
compact metric space, a weak requirement that is satisfied, for instance, when Θ is an Euclidean
space IRk. Next, it is assumed that the unknown density of the Xi’s depends continuously,
in a certain sense, on the parameter θ ∈ Θ; as usual, the discrepancy between two densities is
measured in the logarithmic scale, but it is not supposed that densities corresponding to different
parameters have the same support. Finally, it is assumed that, with probability 1, the maximum
likelihood estimator is well-defined when the sample size is large enough. In this framework, the
main result of the paper, stated as Theorem 4.1 in Section 4, can be roughly described as follows:

? This work was supported in part by the PSF Organization under Grant No. 2006-1, and by
CONACYT–México under Grant 45974-F.
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• A sequence {θ̂n} of maximum likelihood estimators is consistent if, and only if, there exists a
compact set that, with probability 1, contains θ̂n for all n sufficiently large.
When this result is applied to the case Θ = IRk, the following simple characterization is obtained
in Corollary 4.1:
• A sequence of (symmetric) maximum likelihood estimators is consistent if and only if the
sequence is bounded almost surely.
This latter result is a remarkable property of the maximum likelihood estimation method, since an
arbitrary bounded sequence in an Euclidean space is not necessarily convergent. The arguments
used in the this paper rely heavily on two basic facts, namely, (i) the strong law of large numbers
for random variables whose expectation is not necessarily finite (Ash 1972, p. 277, or Billingsley
1995, p. 284), and (ii) the Hewitt-Savage zero-one law for symmetric events (Ash 1972, p. 279,
Billingsley 1995, p. 496).

The organization of the paper is as follows: First, in Section 2 the statistical model is intro-
duced, and the basic structural assumptions are formally stated. Next, the maximum likelihood
estimation procedure is briefly discussed in Section 3, and a zero-one law is established for the
existence of maximum likelihood estimators θ̂n for large samples. Then, in Section 4 the criteria
for the consistency of {θ̂n} are established; the argument in this part uses a technical tool stated
as Theorem 4.2, and the exposition concludes in Section 5 with a proof of this result.

Notation. For a measurable space (S,G) and n = 1, 2, 3, . . ., Sn denotes the n-fold cartesian
product of S with itself, whereas Gn is the σ-field generated by the sets B1×B2× · · · ×Bn with
Bi ∈ G for i = 1, 2, . . . , n. Similarly, S∞ consists of all sequences

x = (x1, x2, x3 . . .)

with xi ∈ S for all i, and G∞ stands for the σ-field generated by the cylinders B × S∞, where
B ∈ Gn for some n. On the other hand, for a positive integer m, Pm denotes the class of all
permutations of {1, 2, . . . , m}, and for each x ∈ S∞,

xτ = (xτ(1), xτ(2), . . . , xτ(m), xm+1, xm+2, . . .), τ ∈ Pm, m = 1, 2, 3, . . . . (1.1)

2. Statistical Model

Let X1, X2, X3, . . . be iid random objects defined on the probability space (Ω,F , P ) and taking
values on the measurable space (S,G). The common distribution of the Xi’s is the measure PX

on G defined by
PX [B] = P [Xi ∈ B], B ∈ G. (2.1)

Assumption 2.1. There exists a (σ-finite) measure ν on (S,G) such that PX is absolutely contin-
uous with respect to ν, i.e., for some (density) function fX :S → [0,∞),

PX [B] =
∫

B

fX(x) ν(dx), B ∈ G. (2.2)

Measure PX—or, equivalently, density fX—contains all probabilistic information about the
sequence {Xi}. However, in practice fX is not completely known, and the statistical problem
consists in using the observed values of X1, X2, X3, . . .—the data—to approximate the unknown
density fX . Hereafter, it is supposed that a priori knowledge about the physical process generat-
ing the observations allows to postulate that fX belongs to a certain restricted class of densities
IF; the assertion

fX ∈ IF (2.3)
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is a statistical model, and in this work it is assumed that the members of IF can be indexed by
the elements of a metric space Θ, i.e.,

IF = {f(x; θ): θ ∈ Θ} (2.4)

where, for each θ ∈ Θ, the G-measurable function f(·; θ): S → [0,∞) is a density function with
respect to ν; in this case (2.3) is a parametric model and Θ is referred to as the parameter space.
The parametrization θ 7→ f(·; θ) from Θ onto IF is supposed to be injective.

Assumption 2.2. For θ, θ′ ∈ Θ with θ 6= θ′,

ν [x: f(x; θ) 6= f(x; θ′)] > 0.

Under the assumption that f(·; θ) = fX(·), the common distribution P̃θ of the Xi’s is given
by

P̃θ[B] =
∫

B

f(x; θ) ν(dx), B ∈ G (2.5)

(see (2.1) and (2.2)); the distribution of the whole process X = (X1, X2, X3, . . .) is denoted by
Pθ and Eθ[·] stands for the corresponding expectation operator. Notice that

Pθ = P̃θ × P̃θ × · · · , (2.6)

is the countable product of measure P̃θ with itself. The (unknown) parameter θ∗ ∈ Θ for which
fX(·) = f(·; θ∗) is the true parameter value, and the problem of looking for fX in family IF,
is the same as searching for θ∗ within Θ. In general, based on a finite number of observations
X1, X2, . . . , Xn, it is not possible to determine θ∗ exactly, and the given data must be used to
construct an estimator θ̃n(X1, X2, . . . , Xn) whose values are used as approximations of θ∗.

Definition 2.1. The sequence {θ̃n ≡ θ̃n(X1, X2, . . . , Xn)} of estimators of θ—or the method used
to build it—is consistent if

Pθ

[
lim

n→∞
θ̃n = θ

]
= 1, θ ∈ Θ.

In the following sections the maximum likelihood method of estimation is studied, and
necessary and sufficient conditions are given for its consistency. The discussion assumes the that
the following mild topological and continuity conditions hold.

Assumption 2.3. The parameter space Θ is a locally compact metric space.

Next, for each θ ∈ Θ define the support Sθ of density f(·; θ) by

Sθ = {x ∈ S: f(x; θ) > 0} (2.7)

whereas, for ε > 0 and θ1 ∈ S, the ε-discrepancy function of family {f(·; θ)} at θ1 is given by

Dε,θ1(x) = sup
θ: d(θ,θ1)<ε

log
(

f(x, θ)
f(x, θ1)

)
I[x ∈ Sθ ∩ Sθ1 ], x ∈ S, (2.8)

where d(·, ·) is the metric in Θ.

Assumption 2.4. (a) For each ε > 0 and θ, θ1 ∈ Θ
(i) D+

ε,θ1
(x) = max{0, Dε,θ1(x)} is G-measurable, and

(ii) Eθ

[
D+

ε,θ1
(X1)

]
→ 0 as ε ↘ 0.
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(b) Given θ0 and θ1 ∈ Θ, if ν[Sθ0 ∩ Sc
θ1

] > 0 then there exists B ∈ G and ε > 0 such that
(i) ν[B] > 0, and
(ii) B ⊂ Sθ0 ∩ Sc

θ when d(θ1, θ) < ε.

Remark 2.1. (a) Assume that there exists a set {ρ1, ρ2, . . .} dense in Θ with the following
property, which is valid in all useful models.
A: For each x ∈ S and θ ∈ Θ, a subsequence {ρnk

} can be found satisfying ρnk
→ θ and

f(x, ρnk
) → f(x, θ) as k →∞.

In this case the supremum in (2.8) can be taken over the ρk’s satisfying d(ρk, θ1) < ε—a countable
set— and then function Dε,θ1(·) is G-measurable.
(b) In certain sense, part (b) in Assumption 2.4 guarantees that the supports Sθ do no experiment
a ‘sudden’ growth as θ → θ1. When S = IRk endowed with the Euclidean norm, and ν(·) is the
corresponding Lebesgue measure, suppose that

Sθ = {(x1, . . . , xk): ai(θ) ≤ x1 ≤ bi(θ), i = 1, 2, . . . , k}

for certain mappings ai(·), bi(·):Θ → IR. In this case Assumption 2.4(b) holds if, for every
i = 1, 2, . . . , k, ai(·) is lower semi-continuous and bi(·) is upper semi-continuous.

3. Maximum Likelihood Estimation

Given a positive integer n and points x1, x2, . . . , xn ∈ S, the likelihood function associated to the
event

[X1 = x1, X2 = x2, . . . , Xn = xn], (3.1)

denoted by Ln(·; x1, x2, . . . , xn):Θ → [0,∞), is defined by

Ln(θ; x1, x2, . . . , xn) =
n∏

i=1

f(xi; θ), θ ∈ Θ. (3.2)

Notice that the likelihoods satisfy

Ln(·;x1, x2, . . . , xn) = Ln(·; xτ(1), xτ(2), . . . , xτ(n)), τ ∈ Pn, (3.3)

so that, defining the set Mn by

Mn = [(x1, x2, . . . , xn) ∈ Sn:Ln(·; x1, x2, . . . , xn) has a maximizer], (3.4)

it follows that Mn is symmetric, i.e.,

(x1, x2, . . . , xn) ∈ Mn ⇐⇒ (xτ(1), xτ(2), . . . , xτ(n)) ∈ Mn, τ ∈ Pn. (3.5)

After observing (3.1), the maximum likelihood method consists in estimating θ by a maximizer
θ̂(x1, x2, . . . , xn) of Ln(·;x1, x2, . . . , xn) whenever such a point exists, so that

Ln(θ̂(x1, x2, . . . , xn); x1, x2, . . . , xn)
≥ Ln(θ;x1, x2, . . . , xn), θ ∈ Θ, (x1, x2, . . . , xn) ∈ Mn

(3.6)

whereas θ̂n(x1, x2, . . . , xn) is defined ‘arbitrily’ if Ln(·; x1, x2, . . . , xn) does not achieve its maxi-
mum, say

θ̂(x1, x2, . . . , xn) = θ∗, (x1, . . . , xn) 6∈ Mn (3.7)

where θ∗ is a fixed member of Θ. On the other hand, θ̂n(·) must be a measurable function of
(x1, x2, . . . , xn) to ensure that θ̂n(X1, X2, . . . , Xn) is a valid estimator, and this requires additional
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conditions on the mapping (x, θ) 7→ f(x; θ). Instead of digging into measurability topics, here
it is simply assumed that Mn belongs to Gn, and that θ̂n(x1, x2, . . . , xn) is a Gn-measurable
function. In these circumstances θ̂n ≡ θ̂(X1, X2, . . . , Xn) is a maximum likelihood estimator of
θ based on X1, X2, . . . , Xn. Next, let θ̃n(X1, X2, . . . , Xn) be an arbitrary maximum likelihood
estimator and define

θ̂n(X1, X2, . . . , Xn) = θ̃n(X(1), X(2), . . . , X(n))

where the X(i)’s are the order statistics of sample X1, X2, . . . , Xn. In this case, form (3.3)–(3.7)
it follows that θ̂n is also a maximum likelihood estimator which is symmetric, i.e.,

θ̂n(X1, X2, . . . , Xn) = θ̂n(Xτ(1), Xτ(2), . . . , Xτ(n)), τ ∈ Pn; (3.8)

all ‘good’ estimators have this property. Observe now that, since θ̂n(·) is defined arbitrarily on
M c

n, the essential characteristic of a maximum likelihood estimate is inequality (3.6), making it
interesting to investigate if the inclusion (x1, x2, . . . , xn) ∈ Mn occurs, with probability one, for
n large enough; the main conclusion in this direction is the zero-one result in Lemma 2.1 below,
whose statement uses the following notation: For x = (x1, x2, x3 . . .) ∈ S∞ and a positive integer
n, set

xn = (x1, x2, . . . , xn), (3.9)

and let M ′
n the set of trajectories x ∈ S∞ such that, after observing X1, X2, . . . , Xn, the corre-

sponding likelihood Ln achieves its maximum. More precisely,

M ′
n = [x ∈ S∞:xn ∈ Mn] = Mn × S∞. (3.10)

With this notation,
⋂∞

m=k M ′
m consists of all trajectories x ∈ S∞ along which the likelihood

corresponding to the first m observations attains its maximum for all m ≥ k, and then

M∗ =
∞⋃

k=1

∞⋂

m=k

M ′
m (3.11)

is the class of all trajectories x for which the likelihoods Lm(·;xm) have maximizers when m is
large enough; in the terminology of Billingsley (1995), or Shao (1999), M∗ is the limit inferior of
the events M ′

m.

Lemma 3.1. For each θ ∈ Θ,

Pθ[M∗] = 0 or Pθ[M∗] = 1.

Proof. Let θ ∈ Θ be arbitrary but fixed, and assume that θ ∈ Θ is the true parameter value, so
that Pθ is the distribution of X = (X1, X2, . . .), and then

Pθ[M∗] = P [X ∈ M∗]. (3.12)

Let the positive integer m and τ ∈ Pm be arbitrary, and observe that, with the notation in (1.1),
for each t ≥ m, (3.4), (3.5) and (3.10) together yield the following result: x ∈ M ′

t ⇐⇒ xτ ∈ M ′
t .

Therefore,

x ∈
∞⋃

k=m

∞⋂

t=k

M ′
t ⇐⇒ xτ ∈

∞⋃

k=m

∞⋂

t=k

M ′
t .

On the other hand, observing that
⋂∞

t=k M ′
t ⊂

⋂∞
t=k1

M ′
t for k ≤ k1, it follows from (3.11) that

M∗ =
⋃∞

k=m

⋂∞
t=k M ′

t ; consequently, since the positive integer m and τ ∈ Pm are arbitrary, the
above display yields that

x ∈ M∗ ⇐⇒ xτ ∈ M∗, τ ∈ Pm, m = 1, 2, 3, . . . , (3.13)
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i.e., M∗ is symmetric. Recalling that the Xi’s are iid, the Hewitt-Savage zero-one law for
symmetric events yields that P [X ∈ M∗] = 1 or P [X ∈ M ] = 0 (Ash 1972, Billingsley 1995),
and then Pθ[M∗] = 0 or Pθ[M∗] = 1, by (3.12). tu

Since θ̂n(X1, . . . , Xn) is arbitrary when (X1, X2, . . . , Xn) 6∈ Mn, it is clear that a good
asymptotic behavior of {θ̂n} can be expected only when Pθ[M∗] = 1, This requirement holds for
all the models usually considered in applications, and in general, can be guaranteed by imposing
conditions like continuity of the mapping θ 7→ f(x; θ) for each x ∈ S and (i) compactness of Θ,
or (ii) supθ∈Θ\Ki

f(x; θ) → 0 as i →∞, where Θ =
⋃∞

i=1 Ki and each set Ki is compact. Instead
of giving explicit conditions to ensure that Pθ[M∗] = 1, it is simply supposed that this equality
holds for every θ ∈ Θ.

Assumption 3.1. Mn ∈ Gn for n = 1, 2, 3, . . ., and Pθ[M∗] = 1 for each θ ∈ Θ.

4. Necessary and Sufficient Conditions for Consistency

This section analyzes the consistency of a sequence of maximum likelihood estimators. As it is
shown by the following simple example, under the assumptions in this work consistency of the
maximum likelihood method does not necessarily hold.

Example 4.1. Let the parameter space be Θ = {0, 1, 2, 3, . . .} endowed with the discrete metric,
and let ϕ(x) be a density on the real line such that ϕ(x) > 0 for every x ∈ IR = S. Set
f(x; 0) = ϕ(x) and for k = 1, 2, 3, . . .

f(x; k) =
ϕ(x)
ck

I[x ∈ [−k, k]], where ck =
∫ k

−k

ϕ(x) dx.

In this context, the assumptions in the previous sections hold and, for each x1, x2, . . . , xn ∈ IR,
the likelihood function Ln(·;x1, x2, . . . , xn) achieves its maximum at the single point

θ̂n(x1, . . . , xn) = min{k ∈ Θ: |xi| ≤ k, i = 1, 2, . . . , n},

and it is not difficult to see that θ̂n → ∞ with probability 1 with respect to P0. Therefore, the
condition θ̂n → 0 P0-almost surely fails, and then {θ̂n} is not a consistent sequence; see Definition
2.1. (In Lehmann and Casella (1998, p.445) a more sofisticated example is presented for which
the convergence θ̂n → θ Pθ-almost surely fails for every θ ∈ Θ.) /

The following theorem provides necessary and sufficient conditions for the consistency of a
sequence of maximum likelihood estimators.

Theorem 4.1. Suppose that Assumptions 2.1–2.4 as well as Assumption 3.1 hold, and let {θ̂n ≡
θ̂n(X1, X2, . . . , Xn)} be a sequence of maximum likelihood estimators. In this case, the following
assertions (a) and (b) are equivalent:

(a) {θ̂n} is a consistent sequence of estimators of θ; see Definition 2.1.
(b) For each θ ∈ Θ, there exists a compact set Cθ ⊂ Θ such that, with probability 1 with respect
to Pθ, θ̂n belongs to Cθ for n large enough. More precisely,

Pθ

[ ∞⋃

k=1

∞⋂

r=k

[
θ̂r ∈ Cθ

]]
= 1, θ ∈ Θ. (4.1)

As it is shown in the following corollary, Theorem 4.1 renders a simple characterization of
consistency for models with Θ = IRk.
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Corollary 4.1. Suppose that Θ = IRk endowed with the Euclidean norm ‖·‖, and that Assumptions
2.1, 2.2, 2.4 and 3.1 hold. Let {θ̂n} be a sequence of maximum likelihood estimators satisfying
the symmetry condition (3.8). In this case, {θ̂n} is consistent if and only if

Pθ

[
lim sup

n→∞
‖θ̂n‖ < ∞

]
= 1, θ ∈ Θ. (4.2)

According to this corollary, a sequence {θ̂n} of symmetric maximum likelihood estimators is
consistent if and only if, with probability 1 with respect to each distribution Pθ, {θ̂n} is bounded.
This characterization is an interesting property of the maximum likelihood method, particulary
when recalling that a general bounded sequence in IRk is not necessarily convergent.

Proof of Corollary 4.1. If {θ̂n} is consistent, (4.2) follows from the inclusions

[
lim

n→∞
θ̂n = θ

]
⊂

[
lim sup

n→∞
‖θ̂n‖ ≤ ‖θ‖

]
⊂

[
lim sup

n→∞
‖θ̂n‖ < ∞

]
.

Now, suppose that (4.2) holds and let θ ∈ Θ be arbitrary but fixed. For each integer k, define
the event

Bk =
[
x ∈ S∞: lim sup

n→∞
‖θ̂n(xn)‖ ≤ k

]
, (4.3)

so that
⋃∞

k=1 Bk =
[
lim supn→∞ ‖θ̂n‖ < ∞

]
, and the equality in (4.2) yield that there exists an

integer k(θ) such that
Pθ

[
Bk(θ)

]
> 0. (4.4)

On the other hand, from (4.3) and (3.8) it follows that each set Bk is symmetric, i.e., if x ∈ Bk

then xτ ⊂ Bk for each τ ∈ Pm and m = 1, 2, 3, . . . (see (1.1)), so that, as in the proof of Lemma
3.1, the Hewitt-Savage zero-one law yields that Pθ[Bk] = 0 or Pθ[Bk] = 1, and then

Pθ[Bk(θ)] = 1, (4.5)

by (4.4). To continue, notice that (4.3) yields that if x ∈ Bk(θ) then there exists an integer
N(x) such that ‖θ̂n(xn)‖ ≤ k(θ) + 1 for n ≥ n(x), i.e., x ∈ ⋂∞

n=N(x)[‖θ̂n‖ ≤ k(θ) + 1] ⊂⋃∞
r=1

⋂∞
n=r[‖θ̂n‖ ≤ k(θ) + 1], that is,

Bk(θ) ⊂
∞⋃

r=1

∞⋂
n=r

[θ̂n ∈ Cθ],

where Cθ is the compact ball {θ ∈ IRk: ‖θ‖ ≤ k(θ) + 1}; thus,

Pθ

[ ∞⋃
r=1

∞⋂
n=r

[
θ̂n ∈ Cθ

]]
= 1,

by (4.5). Since θ ∈ Θ is arbitrary, it follows that {θ̂n} is consistent, by Theorem 4.1. tu

The proof of Theorem 4.1 relies on the following technical tool, which will be verified in the
following section.

Theorem 4.2. Assume that the conditions in Theorem 4.1 hold, let θ0 ∈ Θ be arbitrary but fixed,
and let K ⊂ Θ be a compact set such that θ0 6∈ K. In this context, there exists UK ∈ G∞ with
the following properties (a) and (b):
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(a) Pθ0 [UK ] = 1;

(b) For each x ∈ UK , θ̂n(xn) does not belong to K for n large enough. More precisely, there
exists a function NK :UK → {1, 2, 3, . . .} such that

θ̂n(xn) 6∈ K, x ∈ UK , n ≥ NK(x). (4.6)

Proof of Theorem 4.1. Assume that the sequence {θ̂n} is consistent. Let θ ∈ Θ be arbitrary but
fixed, and select εθ > 0 such that the closed ball Cθ = {θ′ ∈ Θ: d(θ′, θ) ≤ εθ} is compact; see
Assumption 2.3. Observing that

[
lim

n→∞
θ̂n = θ

]
⊂

∞⋃

k=1

∞⋂

n=k

[
d(θ̂n, θ) ≤ εθ

]
=

∞⋃

k=1

∞⋂

n=k

[
θ̂n ∈ Cθ

]
,

the consistency of {θ̂n} yields (4.1).

Assume that (4.1) holds, where each set Cθ is compact. In this case let θ0 ∈ Θ be arbitrary but
fixed, and observe the following facts (a)–(c):

(a) If x ∈ ⋃∞
k=1

⋂∞
n=k

[
θ̂n ∈ Cθ0

]
, there exists k(x) such that x ∈ ⋂∞

n=k(x)

[
θ̂n ∈ Cθ0

]
, i.e.,

θ̂n(xn) ∈ Cθ0 , n ≥ k(x).

(b) Given ε > 0, let B(θ0, ε) = {θ′ ∈ Θ: d(θ′, θ0) < ε} be the open ball with center θ0 and radius
ε > 0, and define the set K = Cθ0 ∩B(θ0, ε)c, so that K is compact, θ0 6∈ K, and

Cθ0 = K ∪ (Cθ0 ∩B(θ0, ε)).

(c) Since θ0 6∈ K, by Theorem 4.2 there exists an event UK ∈ B(S∞) with Pθ0 [UK ] = 1, as well
as a function NK(·):UK → {1, 2, 3, . . .} satisfying that, for each x ∈ UK ,

θ̂n(xn) 6∈ K, n ≥ NK(x);

see (4.6).
Setting N(x) = max{k(x), NK(x)}, (a)–(c) together yield

x ∈ Uk ∩
( ∞⋃

k=1

∞⋂

n=k

[
θ̂n ∈ Cθ0

])
=⇒ θ̂n(x) ∈ Cθ0 ∩B(θ0, ε)), n ≥ N(x)

=⇒ x ∈
[
θ̂n ∈ B(θ0, ε)

]
, n ≥ N(x)

=⇒ x ∈
∞⋂

n=N(x)

[
d(θ̂n, θ0) < ε

]
,

so that

Uk ∩
( ∞⋃

k=1

∞⋂

n=k

[
θ̂n ∈ Cθ0

])
⊂

∞⋃

k=1

∞⋂

n=k

[
d(θ̂n, θ0) < ε

]

and then Pθ0

[⋃∞
k=1

⋂∞
n=k

[
d(θ̂n, θ0) < ε

]]
= 1. Since this latter equality holds for every ε > 0,

it follows that Pθ0

[
lim

n→∞
θ̂n = θ0

]
= 1 (Billingsley, 1995, p. 70), and then {θ̂n} is a consistent

sequence of estimators of θ, since θ0 ∈ Θ is arbitrary. tu

8



5. Proof of Theorem 4.2

Throughout the remainder θ0 ∈ Θ is arbitrary but fixed, the assumptions in Sections 2 and 3 are
supposed to hold without explicit reference, and {θ̂n} is a given sequence of maximum likelihood
estimators of θ. As usual, instead of analyzing functions Ln(·;xn) directly, it is convenient to
consider its normalized logarithm

Ln(θ;xn) =
1
n

log (Ln(θ;xn)) =
1
n

n∑

i=1

log(f(xi; θ), θ ∈ Θ, (5.1)

where the convention log(0) = −∞ is enforced; since log(·) is strictly increasing on [0,∞), (3.6)
is equivalent to

Ln(θ̂(xn);xn) ≥ Ln(θ;xn), θ ∈ Θ, xn ∈ Mn. (5.2)

The proof of Theorem 4.2 is based on the following technical result.

Theorem 5.1. Given θ1 ∈ Θ with θ1 6= θ0, there exist positive numbers ε(θ1) and ∆(θ1), as well
as an event Uθ1 ∈ G∞ and a function Nθ1 :Uθ1 → {1, 2, 3, . . .} such that the following properties
(a) and (b) hold:

(a) Uθ1 ⊂ S∞θ0
and Pθ0 [Uθ1 ] = 1;

(b) For each x ∈ Uθ1

Ln(θ;xn) ≤ Ln(θ0;xn)−∆(θ1), if n ≥ Nθ1(x) and d(θ, θ1) < ε(θ1).

The argument used below to establish this result relies on the following consequence of
Jensen’s inequality.

Lemma 5.1. If θ1 ∈ Θ \ {θ0} and ν(Sθ0 ∩ Sc
θ1

) = 0, then assertions (a) and (b) below occur.

(a) The following inequality holds:

Eθ0

[
log

(
f(X1; θ1)
f(X1; θ0)

)]
< 0, (5.3)

where the expectation may be −∞.

(b) There exist positive numbers ∆(θ1) and ε(θ1) such that

Eθ0

[
D+

ε,θ1
(X1) + log

(
f(X1; θ1)
f(X1; θ0)

)]
≤ −2∆(θ1), if 0 < ε ≤ ε(θ1).

Proof. (a) Since ν(Sθ0 ∩ Sc
θ1

) = 0, via (2.5) and (2.7) it follows that

1 = P̃θ0 [Sθ0 ] =
∫

Sθ0

f(x; θ0) ν(dx) =
∫

Sθ0∩Sθ1

f(x; θ0) ν(dx) = P̃θ0 [Sθ0 ∩ Sθ1 ] (5.4)

and

Eθ0

[
log

(
f(X1; θ1)
f(X1; θ0)

)]
=

∫

Sθ0∩Sθ1

log
(

f(x; θ1)
f(x; θ0)

)
f(x; θ0) ν(dx) (5.5)

Assume now that f(x; θ1)/f(x; θ0) is not constant ν-almost everywhere on Sθ0 ∩ Sθ1 . In this
case, using the strict concavity of log(·), (5.3) follows from the two displays above via Jensen’s
inequality. To conclude, it is sufficient to show that (5.3) holds when, for some c ∈ [0,∞),

f(x; θ1)/f(x; θ0) = c ν-almost everywhere on Sθ0 ∩ Sθ1 . (5.6)
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In this case, since f(·; θ1) is a density,

1 =
∫

Sθ1

f(x; θ1)ν(dx) ≥
∫

Sθ0∩Sθ1

f(x; θ1)ν(dx) = c

∫

Sθ0∩Sθ1

f(x; θ0)ν(dx) = c,

where (5.4) was used to set the last equality. From (5.5) it is clear that (5.3) will follow if it is
shown that c < 1, inequality that will be now established. Assume that c = 1, so that the above
displayed relation yields 1 =

∫
Sθ0∩Sθ1

f(x; θ1)ν(dx) =
∫

Sθ1
f(x; θ1)ν(dx); since f(·; θ1) is positive

on Sθ1 , it follows that
ν

[
Sθ1 ∩ Sθc

0

]
= 0

and, moreover, via (5.6), equality c = 1 yields

ν [[x: f(x; θ1) 6= f(x; θ0)] ∩ (Sθ0 ∩ Sθ1)]] = 0.

Observing that [x: f(x; θ1) 6= f(x; θ0)] ⊂ Sθ0 ∪ Sθ1 , the condition ν
[
Sθ0 ∩ Sc

θ1

]
= 0 and the last

two displays together yield ν [x: f(x; θ1) 6= f(x; θ0)] = 0, contradicting Assumption 2.2, since
θ1 6= θ0. Therefore, c < 1 and the proof of part (a) is complete.

(b) Using part (a), select ∆(θ1) > 0 such that Eθ0 [log (f(X1; θ1)/f(X1; θ0))] < −3∆(θ1). By
Assumption 2.4(b) there exists ε(θ1) > 0 such that Eθ0

[
D+

ε,θ1
(X1)

]
< ∆(θ1) for ε ∈ (0, ε(θ1)],

and part (b) follows. tu

The following simple result involving the discrepancy function in (2.8) will be useful.

Lemma 5.2. Let θ1 ∈ Θ \ {θ0} be arbitrary but fixed. For every x ∈ Sθ0 ∩ Sθ1 and ε > 0

log (f(x; θ)) ≤ D+
ε,θ1

(x) + log
(

f(x; θ1)
f(x; θ0)

)
+ log (f(x; θ0)) if d(θ, θ1) < ε. (5.7)

Proof. Let x ∈ Sθ0 ∩ Sθ1 be arbitrary, so that f(x; θ1)f(x; θ0) > 0. Firstly, notice that (5.7)
is valid when x 6∈ Sθ, since the left hand side is −∞. Next, assume that x ∈ Sθ, so that
I[x ∈ Sθ ∩ Sθ1 ] = 1. From f(x; θ) = [f(x; θ)/f(x; θ1)] [f(x; θ1)/f(x; θ0)] f(x; θ0) it follows that

log (f(x; θ)) = log
(

f(x; θ)
f(x; θ1)

)
+ log

(
f(x; θ1)
f(x; θ0)

)
+ log (f(x; θ0))

= log
(

f(x; θ)
f(x; θ1)

)
I[x ∈ Sθ ∩ Sθ1 ] + log

(
f(x; θ1)
f(x; θ0)

)
+ log (f(x; θ0))

and, via (2.8), this yields (5.7). tu

Proof of Theorem 5.1. The argument is divided in two cases according to the value of ν[Sθ0∩Sc
θ1

].

Case 1: ν[Sθ0 ∩ Sc
θ1

] = 0.
To start with, notice that (2.5) and (2.7) yield that 1 = P̃θ0 [Sθ0 ] = P̃θ0 [Sθ0 ∩ Sθ1 ], so that

Pθ0 [(Sθ0 ∩ Sθ1)
∞] = 1; (5.8)

see (2.6). Next, let ∆(θ1) and ε(θ1) be as in Lemma 5.1(b), and define M as the class of all
trajectories x = (x1, x2, x3, . . .) ∈ S∞ such that

lim
n→∞

1
n

(
n∑

i=1

D+
ε(θ1),θ1

(xi) +
n∑

i=1

log
(

f(xi; θ1)
f(xi; θ0)

))

= Eθ0

[
D+

ε(θ1),θ1
(X1) + log

(
f(X1; θ1)
f(X1; θ0)

)]
≤ −2∆(θ1).
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Therefore,
Pθ0 [M ] = 1, (5.9)

by the strong law of large numbers, and there exists Nθ1(·): M → {1, 2, 3, . . .} such that

1
n

(
n∑

i=1

D+
ε(θ1),θ1

(xi) +
n∑

i=1

log
(

f(xi; θ1)
f(xi; θ0)

))
< −∆(θ1), x ∈ M, n ≥ Nθ1(x). (5.10)

On the other hand, for x ∈ (Sθ0 ∩ Sθ1)
∞, it follows that xi ∈ Sθ0 ∩ Sθ1 for each i, so that

log (f(xi; θ)) ≤ D+
ε(θ1),θ1

(xi) + log
(

f(xi; θ1)
f(xi; θ0)

)
+ log (f(xi; θ0)) if d(θ, θ1) < ε(θ1),

by Lemma 5.2, and then (see (5.1))

Ln(θ;xn) ≤ 1
n

(
n∑

i=1

D+
ε(θ1),θ1

(xi) +
n∑

i=1

log
(

f(xi; θ1)
f(xi; θ0)

))
+ Ln(θ0;xn)

if x ∈ (Sθ0 ∩ Sθ1)
∞ and d(θ, θ1) < ε(θ1)

Setting Uθ1 = (Sθ0 ∩ Sθ1)
∞ ∩M , part (a) in Theorem 5.1 follows from (5.8) and (5.9), whereas

part (b) follows combining the above relation and (5.10).

Case 2: ν[Sθ0 ∩ Sc
θ1

] > 0.

In this framework, Assumption 2.4(b) allows to select ε(θ1) > 0 and B ∈ G such that ν[B] > 0
and

B ⊂ Sθ0 ∩ Sc
θ when d(θ, θ1) < ε(θ1). (5.11)

Since f(·; θ0) is positive on Sθ0 , it follows that

P̃θ0 [B] =
∫

B

f(x; θ0) ν(dx) > 0

and defining

Uθ1 =

[
x ∈ S∞θ0

: lim
n→∞

1
n

n∑

i=1

I[xi ∈ B] = P̃θ0 [B]

]

the strong law of large number yields that Pθ0 [Uθ1 ] = 1, so that Uθ1 satisfies the conclusions
in part (a) of Theorem 5.1. To conclude, part (b) of Theorem 5.1 will be verified. Define
Nθ1 :Uθ1 → {1, 2, 3, . . .} by

Nθ1(x) = min{i : xi ∈ B}, x ∈ Uθ1

and notice that Nθ1(·) is always finite, since P̃θ0 [B] > 0. For x ∈ Uθ1 and n > Nθ1(x) there exists
a positive integer i < n such that xi ∈ B; in fact, i = Nθ1(x) is such an integer. In this case
f(xi; θ) = 0 if d(θ, θ1) < ε(θ1), by (5.11) and (2.7), and then

Ln(θ;xn) = −∞, n > Nθ1(x), d(θ, θ1) < ε(θ1), x ∈ Uθ1 ;

see (5.1) and recall the convention log(0) = −∞. On the other hand, observe that xi ∈ Sθ0 for
all i when x ∈ Uθ1 , and in this case f(xi; θ0) > 0, so that Ln(θ0;xn) ∈ IR, by (5.1), and then

Ln(θ;xn) < Ln(θ0;xn)− 1, n > Nθ1(x), d(θ, θ1) < ε(θ1), x ∈ Uθ1 ,

completing the proof. tu
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Proof of Theorem 4.2. Let K be an arbitrary compact subset of Θ such that θ0 ∈ Θ ∩Kc. For
each θ′ ∈ K, Theorem 5.1 yields the existence of positive numbers ε(θ′) and ∆(θ′) as well as an
event Uθ′ ∈ G∞ and a function Nθ′ :Uθ′ → {1, 2, 3, . . .} such that

Uθ′ ⊂ S∞θ0
, Pθ0 [Uθ′ ] = 1, (5.12)

and

Ln(θ;xn) ≤ Ln(θ0;xn)−∆(θ′), x ∈ Uθ′ , n > Nθ′(x), θ ∈ B(θ′, ε(θ′)) (5.13)

where, as before, B(θ′, ε(θ′)) is the open ball in Θ with center θ′ and radius ε(θ′). Observing that
K ⊂ ⋃

θ′∈K B(θ′, ε(θ′)), the compactness of K yields that for a finite set {θ1, θ2, . . . , θr} ⊂ K

K ⊂
r⋃

i=1

B(θi, ε(θi)). (5.14)

Setting

ŨK =
r⋂

i=1

Uθi ,

ÑK(x) = max{Nθ1(x), Nθ2(x), . . . , Nθr
(x)}

and
∆K = min{∆(θ1), ∆(θ2), . . . , ∆(θr)} > 0,

(5.12) yields that
ŨK ⊂ S∞θ0

, and Pθ0 [ŨK ] = 1, (5.15)

whereas (5.13) and (5.14) together imply that

Ln(θ;xn) ≤ Ln(θ0;xn)−∆K , x ∈ ŨK , n > ÑK(x), θ ∈ K. (5.16)

On the other hand, from the definition of M∗, there exists a function N : M∗ → {1, 2, 3, . . .} such
that if x ∈ M∗ then xn ∈ Mn for n > N(x); see (3.10) and (3.11). Combining this latter fact
with (5.2), it follows that

Ln(θ̂(xn);xn) ≥ Ln(θ;xn), x ∈ M∗, n > N(x), θ ∈ Θ. (5.17)

To conclude, set UK = ŨK ∩ M∗. With this notation Assumption 3.1 and (5.15) yield that
UK ⊂ S∞θ0

and Pθ0 [UK ] = 1, whereas setting NK(x) = max{ÑK(x), N(x)} for x ∈ UK , and using
that ∆K > 0, relations (5.16) and (5.17) yield that θ̂n(xn) 6∈ K for x ∈ UK and n > NK(x),
completing the proof. tu
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